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Nonlinear dynamics of capillary bridges : theory 
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Finite-amplitude, forced and free oscillations of capillary bridges are studied. They are 
characterized by a resonant frequency and a damping rate which, in turn, depend on 
fluid properties, dimensions of the bridge, gravitational force relative to surface tension 
and amplitude of the external disturbance. The Navier-Stokes equations are solved 
numerically using the Galerkin/finite-element methodology for discretization in space 
and implicit finite differences with adaptive time stepping for discretization in time. It 
is found that the resonant frequency decreases and the damping rate increases almost 
linearly with the oscillation amplitude. Their relative changes from their corresponding 
values at infinitesimal amplitude depend on fluid properties and dimensions of the 
bridge. Moreover, careful measurement of the resonant frequency and damping rate in 
a well-controlled experiment may provide quite accurate values for properties of the 
liquid over a wide range of modified Reynolds numbers. 

1. Introduction 
Studies on the stability and dynamics of fluid bridges between two solid objects date 

back to the classic experiments by Plateau (1863) and the theories by Young (1805), 
Laplace (1805), and Rayleigh (1879). Current interest has increased since fluid bridges 
arise in quite diverse, natural and industrial operations. Such operations include 
particulates agglomeration (Chen, Tsamopoulos & Good 199 I), flow, evaporation, 
and condensation in porous media (Melrose 1966; Zasadzinski et al. 1987), materials 
processing on Earth or in a microgravity environment (Preisser, Schwabe & Scharmann 
1983; Brown 1988; Duranceau & Brown 1986, 1988). 

Here the nonlinear dynamics of isothermal liquid bridges will be studied. Mason 
(1970) first observed that it was possible to establish standing waves on the surface of 
a liquid bridge by vibrating its support and adjusting its length. Similar experiments 
were performed by Fowle, Wang & Strong (1979) who also developed a theory under 
the assumption that the motion is of small amplitude, the fluid inviscid and the flow 
irrotational. Subsequently, Meseguer (1983), Rivas & Meseguer (1984) and Sanz 
(1985), among others, studied the dynamics of axisymmetric bridges. These authors 
employed either a one-dimensional Cosserat model or restricted the analysis to inviscid 
fluids. 

More recently, Borkar & Tsamopoulos (1991) used a boundary-layer analysis for 
fluids with large but finite Reynolds number in order to satisfy both the no-penetration 
and no-slip boundary conditions at solid/liquid interfaces. Oscillation frequencies and 
damping rates were calculated for bridges undergoing small-amplitude oscillations. 
Damping could be due to either the viscous boundary layers or the restrained motion 
of the three-phase contact line. Moreover, Tsamopoulos, Chen & Borkar (1992) 
determined the range of validity of this analysis by performing linear calculations for 
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arbitrary Reynolds number Re and generalized their results by including the 
gravitational force and three-dimensional disturbances. Such a complete linear analysis 
had not been performed previously since analytic solutions turned out to be quite 
complicated and required verification and extension by numerical ones. Results 
covered a wide range of modified Re, 2 < Re < 1000, which includes materials with 
high viscosity and low surface tension, e.g. ethylene glycol or molten ceramics, and vice 
versa, e.g. water or liquid metals. Thus, it was shown that the boundary-layer theory 
is valid for about Re > 100. 

One of the goals of our studies is to examine the possibility and explore the 
conditions under which forced and free oscillations of liquid bridges can be used to 
measure surface tension and viscosity of various materials including molten ceramics 
and semiconductors. Quite often in such cases, fluids are at high temperatures, require 
minimum contact with the testing apparatus and cover a wide range of viscosities. For 
a short review on this subject see Tsamopoulos et al. (1992). As it was discussed there, 
either static bridge shapes or their resonance frequencies may be related to the surface 
tension of the material. In addition, either resonance frequencies or damping rates of 
free oscillations may be related to the material viscosity. This method seemed to be 
most promising for materials with modified Reynolds number less than 100, depending 
on bridge geometry and the mode being excited. In a quite different context, 
oscillations of the supporting rods may decrease concentration or temperature 
inhomogeneities by inducing convective transport throughout the bridge. 

Clearly, it is very important to assess the effect of inertia forces and other 
nonlinearities during oscillations since they are inevitably present in most experiments 
performed by us and others. It is well known that inertia decreases resonance 
frequencies, at least for fluids with low viscosity; see, for example, Tsamopoulos & 
Brown (1983, 1984). Therefore, it may alter resonance frequencies even when Re c 
100. It is also likely that inertia will affect damping rates predicted by linear theory. 
Furthermore, the significant deviation between the damping rates predicted by the 
boundary layer and viscous theories for 10 < Re < 100 might be attributed to the fact 
that viscous dissipation may take place not only on the solid/liquid interfaces but also 
on the gas/liquid interfaces and in the bulk of the liquid. Clearly, then, the former 
theory would be inapplicable and even more so any theory that assumes inviscid fluids 
and irrotational flow. The present analysis clarifies this point further. 

Here calculations of the shape of a liquid bridge and fluid flow inside it are carried 
out. The bridge is subject to large-amplitude, forced oscillations which are induced by 
vertical vibrations of the upper bounding wall. By varying the forcing frequency for a 
given bridge geometry and fluid properties, resonance is identified when the bridge 
surface deviates furthest from a cylindrical shape. Thus, the nonlinear resonance 
frequency is computed. Knowledge of the linear eigenfrequency (Tsamopoulos et al. 
1992) proved most useful in organizing and interpreting the results presented here and 
in keeping to a reasonable limit the number of calculations required, which were quite 
expensive. Subsequently, motion of the upper wall is interrupted and the nonlinear 
damping rate is determined. 

In all cases, the bridge shape at every time step is determined by the interplay of 
pressure, viscous forces and surface tension and it is calculated simultaneously with the 
other variables. All interfaces are described relative to a cylindrical coordinate system 
in a fashion similar to that employed by Poslinski & Tsamopoulos (1991). The 
dynamics are governed by the Navier-Stokes equations subject to kinematic and 
dynamic boundary conditions on the moving surfaces. Gravitational effects are 
included and their relative importance is measured by the gravitational Bond number. 
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Governing equations and boundary conditions are given in Q 2. The Galerkin/finite- 
element solution methodology as adopted for the present problem is summarized in $3. 
Results are presented and discussed in $4 and conclusions are drawn in $5.  

2. Governing equations 
A liquid bridge of volume To is considered. As shown in figure 1, the bridge is 

situated between two solid and coaxial rods of equal radius R. The bottom rod is 
stationary and the top rod is undergoing a sinusoidal vertical oscillation according to 
Z = e+ Ksin (ijf), where 2 is the amplitude, is the forcing frequency of oscillation, 
and overbars indicate dimensional quantities. The liquid wets the two planar solid 
surfaces which initially are at a distance L from each other and forms a fixed and 
circular contact line on the edge of each rod, irrespective of the state of motion of the 
bridge. L is kept below the Rayleigh stability limit in a gravity-free case (L  < 2 d ) ,  or 
below the corresponding limit point when gravity is present; see Tsamopoulos, 
Poslinski & Ryan (1988). It should be pointed out that these limiting values of E for 
stable shapes have been calculated and are relevant for static bridges only. It is also 
assumed that the surrounding gas has negligible density and viscosity so that it does 
not affect the dynamics of the liquid bridge. Furthermore, bulk properties of the liquid 
(density p, and viscosity p) as well as surface tension y, are uniform and constant under 
the present isothermal analysis. 

Oscillatory disturbances initiate motion of the liquid, which can be easily detected 
at the free surface of the bridge. This motion is affected by the physical properties of 
the liquid, its static shape which in turn depends on R, L, and gravity, and the 
amplitude and frequency of oscillation. Gravity acts downwards along the z-axis. The 
usual cylindrical coordinate system (Y, 8, z )  with origin at the bottom rod and coaxial 
with the axis of symmetry between the two rods is defined. The corresponding 
components of velocity are Y = (u, U, N). The goal is to compute the time-dependent 
flow field, the nonlinear resonant frequency and damping rate of the system. All these 
will be related to the physical properties of the liquid, bridge geometry, and the 
amplitude of the motion. 

Conservation equations of mass and momentum are written in dimensionless form: 

v.  v =  0, (2.1) 

g2Re -+olV.VV = -RReV-(P/)+gV.T, (2.2) (E 1 
where the modified pressure is defined by P = ( p  + Bz)/a, / is the identity tensor, and 
the extra stress is defined by T = (VV+V V). Variables have been rendered 
dimensionless with respect to their dimensional counterparts as follows : 

As a result, the gravitational Bond number B = pgRL/y  (g is the gravitational 
acceleration), the forcing amplitude 01 = A/R, the forcing frequency r = ~(pl?/y)f ,  
and the modified Reynolds number, Re = (pyR)i/p arise in (2.2). This scaling has been 
preferred for this problem since it groups together all relevant fluid properties in the 
modified Re which is also the only available dimensionless number in the linear 
problem (Tsamopoulos et al. 1992). The same dimensionless group is sometimes 
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FIGURE 1. Schematic representation of a liquid bridge. 

referred to as the Suratman number, Su =pyR/pa,  or the Ohnesorge number, 
Oh = ,u/CoyR)f. When a is very small the convective term in (2.2) drops out and the 
linearized Navier-Stokes equation results. Different lengthscales have been used in the 
radial and axial directions and their ratio, A = R/E,  is the so-called aspect ratio and 
serves as the fifth parameter of this system. It arises, for example, in the dimensionless 
form of the gradient operator: 

a i a  a 
ar ra0  a Z  

V = e , -+e , - -+e ,A- .  

Since only axisymmetric disturbances and motion are examined (a/M = 0), the 
azimuthal velocity is zero throughout the bridge (v = 0) and 

(2.4) 
a w  
ar u = - = o  at Y = 0. 

Moreover, the usual no-slip boundary conditions are applied at both solid surfaces 
which, for forced oscillations, are 

u=O at z = O  and z = l + G ( t ) = l + a A s i n t .  (2.5) 
The no-penetration boundary condition is imposed at the surface of the bottom rod 
and the normal velocity of the fluid in contact with the upper boundary surface follows 
the oscillation of the rod, 

w = O  at z=O, ( 2 . 6 ~ )  
W = C O S ~  at z=l+G(t ) .  (2.6b) 

Furthermore, at the liquid/gas interface, the tangential stress must be zero and the 
total normal stress must be balanced by the capillary force: 

t ,  N :  T = 0, r = f(z, t) ,  (2.7) 
[ R e ( - p - B z ) / + a m ] : N N + R e 2 2  = 0, Y =f(z,t). (2.8) 

In (2.7) and (2.8), the ambient pressure has been taken as the reference pressure and 
t, and N are the unit tangent and outward pointing normal to the interface, 
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respectively. In the Mongt representation, a point on the axisymmetric interface can 
be described by the position vector F(z, t )  = f ( z ,  t )  e, +ze,. Consequently, Nand t, are 
given by 

(2.10) 

where the subscript z denotes partial differentiation with respect to the z-coordinate. 
The curvature of the axisymmetric interface, Z, has been scaled by R-l and is equal 
to 

(2.1 1) 

with respect to the cylindrical coordinate system. The final boundary condition that 
arises at the moving interface is the kinematic condition. It is used to determine the 
unknown location of the moving interface and it equates the velocity of the surface to 
the fluid velocity there 

i3F 
N - -  = aN. V, r = f ( z ,  t). at 

(2.12) 

Throughout the motion, the contact line of the liquid/gas interface with each 
cylindrical rod remains fixed at the edge of each rod (Benjamin & Scott 1979), 

f ( z , t )  = 1 at z = 0 and z = l+G( t ) .  (2.13) 

In addition, the volume of the liquid bridge must remain constant. In the present 
analysis, it is taken to be equal to the volume of the space between the rods before the 
external excitation is applied on the liquid bridge, 

(2.14) 

Equation (2.14) serves as an a posteriori check of the accuracy of the present 
calculations. Transient integration is initiated from the rest state, V = 0. In the case of 
zero gravity ( B  = 0), the rest state is f ( z ,  0) = 1, and p = 1.  If the gravitational force 
is included ( B  =t= 0), the rest state must be calculated by solving (2.8) and (2.14) for 
f ( z ,  0) and the hydrostatic pressure p ;  see Tsamopoulos et al. (1992). The necessary 
modification of boundary conditions (2.5), (2.6) and (2.1 3) during free oscillations will 
be discussed later. 

3. Numerical solution technique 
Conservation equations along with boundary and initial conditions are solved using 

the Galerkin/finite-element method. The procedure employed here has evolved from 
the studies by Ettouney & Brown (1983) and Duranceau & Brown (1986) for steady- 
state problems and by Derby & Brown (1986) and Poslinski & Tsamopoulos (1991) for 
non-steady-state ones. The central idea is to map the moving and unknown boundaries 
onto a fixed domain using a non-orthogonal coordinate transformation. As an 
alternative, Kistler & Scriven (1983) and Kheshgi & Scriven (1984), parametrized the 
physical domain by introducing spines. 

13 FLM 255 
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The relevant non-orthogonal mapping is described in 53.1 and the finite-element 
discretization in $3.2. Fully implicit time integration is carried out with special 
attention on the time steps at start up and at reversal in the direction of motion of the 
upper rod. This is explained in $3.3. The modified Newton iterative procedure for 
solving the final algebraic set of equations and certain accuracy tests are given in $3.4. 

3.1. Non-orthogonal transformation 
For transient free-surface motion, the position and shape of the meniscus is not only 
unknown in space but also evolves in time. In order to take into account changes in 
the flow domain, the equations that result from the finite-element discretization are 
transformed from the original coordinate system ( r ,  z, t )  to a fixed computational 
coordinate system (g, 6, 7 )  by the following mapping: 

Equations (3.1)-(3.3) map the deformed meniscus back to a fixed cylindrical domain 
defined in (0 < 5 < 1, 0 d 7 d 1). Consequently, the finite-element mesh is generated 
on this computational domain and remains the same throughout the transient 
integration. Thus, the difficulty of updating the deforming elements in the physical 
domain is avoided. However, the complexity of this formulation increases owing to 
introduction of new spatial and time derivatives into the governing equations; see 
Derby & Brown (1986), and Poslinski & Tsamopoulos (1991). Derivatives in the 
physical domain are transformed into derivatives in the computational domain 
according to 

The terms a r / a ~ ,  az/ar, &/a[, a rpv ,  and az/ag are obtained from the inverse mapping 
of (3.1)-(3.3), and introduce the location of the unknown interfaces explicitly into the 
formulation. Since the position of a material point depends on the location of the 
moving free surface and the position of the oscillating top rod, these derivatives are 
functions of time through the inverse mapping of (3.1) and (3.2). As a result, the second 
term on the right-hand side of (3.6) is due to axial motion of the physical domain. Also, 
the third term in (3.6) is more complicated than that obtained by Poslinski & 
Tsamopoulos (1991), because the length in the z-direction is fixed in their study, 
whereas here the bounding interfaces in both the r- and z-directions are in motion. 
Therefore, this term is composed of both radial, ar/a7, and axial, dz/a7, motion of the 
physical domain. 

3.2. Finite-element discretization 
The computational domain (0 < 7 < 1, 0 < 5 < 1) is partitioned into a finite-element 
mesh using isoparametric rectangular elements. The location of the gas/liquid interface 
and the velocity field are represented by Lagrangian quadratic xi(o and biquadratic 
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q5,(y, 6) basis functions, respectively, and the pressure field is approximated by bilinear 
basis functions +t(y, 5) (i.e. the mixed interpolation for the primitive variables, 
velocities and pressure, is used). The finite-element representations are written as 

where L, M ,  and N are the number of coefficients in each expansion and Vi, 4, and 
are the nodal values of the corresponding variables. Owing to axisymmetry, V is 

composed of the radial and axial velocity components only. The residual equations are 
constructed using Galerkin’s principle. Equations (2. l), (2.2) and (2.13) are multiplied 
by the trial functions $6, q5i and xc, respectively, and they are integrated over the 
domain. The second-order derivatives in the momentum equations are reduced to first- 
order ones by applying the divergence theorem, and the resulting boundary integrals 
are directly evaluated by the appropriate boundary conditions ((2.7) and (2.8)). Hence, 
the weak form of the governing equations written first in the physical domain is as 
follows : 

(3.10) 

R,, = /Qq5i[craRe(g+aV.VV +- --P+ar, e, dQ ) : ( :  1 1  
Vq5,.(-ReP/+m)dS2+ (3.11) 

R,, = 1 l + G ( t )  x c ( l ? f u + A f , w  

0 01 at 
(3.12) 

The residual equations, R = [RCi R,, R,JT = 0, corresponding to continuity, mo- 
mentum, and kinematic equations and will be used to calculate the vector of unknowns 
/3 = [P,, Vt, h], respectively. In these general expressions dS2 = r dr dz denotes the 
differential area with 0 < r <&, t)  and 0 < z < 1 + G(t), whereas dS = (1 +Ayi) idz  
denotes differential arclength along the surface. The mean curvature of the free surface 
arises in the boundary integral on the right-hand-side of (3.11). Next, the procedure 
described by Keunings (1986) is employed in order to reduce the second-order 
derivatives in 2% to first-order ones. By doing so Lagrangian basis functions may still 
be used for representingf(2,t). The main idea is that the mean curvature must be 
decomposed into two terms 

dt, 1 
dS R, 

2 H  N = - A-+-  N, (3.13) 

where t,, Nand dS were defined earlier. Moreover, R, represents the second principal 
radius of curvature and is given by 

R, = f( 1 + A2fZ’)i. (3.14) 
13-2 
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Using (3.13) and (3.14) and integrating by parts the boundary integral term in (3.11) 
yields 

(3.15) 
In (3.15) the essential condition for the interface (f = 1 at z = 0 and at z = 1 + G(t)) has 
been employed. Finally, (3.10j(3.12) and (3.15) are transformed to the fixed 
computational domain by the mapping given in the previous section. As a result, the 
shape function for the free surface and the motion of the top rod appear explicitly 
throughout the equation set, and the limits of integration become constant. The 
resulting equations in their final form are too long to be given here, and can be found 
in Chen (1991). Evaluation of integrals is performed by Gaussian quadrature rules 
defined on an isoparametric rectangular element. Nine Gauss points are used for two- 
dimensional integrals and three Gaussian points are used for one-dimensional 
integrals. 

3.3. Transient integration 
The residual equations (3.10 j(3.12) comprise a set of algebraic equations and first- 
order differential equations with respect to time. Schematically they may be written as 

(3.16) 

where Q(P) is composed of those terms in the residual vectors that do not involve 
derivatives with respect to time and M ( p )  is the mass matrix. M(/3) is singular because 
time derivatives do not appear in the residuals formed from the continuity equation. 
Therefore, only implicit integration schemes may be used. The time derivatives, ?I V/a7 
and af/a7, that arise in the momentum and kinematic residuals are approximated with 
finite differences. To this end, either an explicit Euler predictor-backward Euler 
corrector, or a second-order Adams-Bashforth predictor-trapezoid rule corrector are 
employed. The predictor+orrector scheme automatically adjusts the time-step size so 
as to keep the time truncation error below a predefined tolerance level, which in this 
study is set at For further details see Gresho, Lee & Sani (1980), Kheshgi & 
Scriven (1984) and Poslinski & Tsamopoulos (1991). Here only the required 
modifications to this scheme will be briefly discussed. 

During the initial transients of the motion and in order to suppress any numerical 
oscillations in the exceedingly small values of the dependent variables, calculations are 
started with four backward Euler steps of equal size. This size is chosen as A7 = lop2 
in order to accomplish an optimum balance between numerical error and com- 
putational cost. Whenever a new timestep is selected, the code verifies first that the 
upper rod has not reversed its motion during this time step, otherwise A7 is decreased 
accordingly. When the upper rod reaches either a maximum or a minimum in its 
oscillatory path (at 7 = 2nn + in or T = 2nn +:IT), two backward Euler steps of equal 
size, lop2, are used. This is necessary because now the previous flow field cannot 
provide a ‘ good enough’ initial guess. Otherwise, the second-order Adams-Bashforth 
predictor and trapezoid rule corrector is used. 

For stable bridges in forced oscillation, integration in time is carried out at least till 
the induced oscillatory motion of the fluid repeats itself with the same period as that 
of the rod. It is convenient to represent fluid motion by a measure of deformation of 
the gas/liquid interface which is also easier to observe experimentally. This deformation 
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Time/2n: 
FIGURE 2. Evolution of interface amplitude for a liquid bridge oscillating at resonance in the first 

mode, with Re = 10, A = l/n, cr = 1.25, and a = 0.2. 

measure, A,, is defined as the integral over the bridge length of the absolute value of 
the deviation of the interface from a cylindrical one, 

Ad lo If- 1 I dz. (3.17) 

The steady oscillatory motion is identified by checking that values of A ,  at r = 
2nz + fn, z, and 2z have converged to at least four significant digits between two 
consecutive cycles. The initial transient damps out in a time interval that depends on 
the problem parameters. For example, six oscillation cycles are required if Re = 10, 
cc = 0.2 and A = 1/n, whereas eleven oscillation cycles are required if Re = 20,a = 0.2 
and A = 1/z, see figures 2 and 3. Given the definition in (3.17) each oscillation cycle 
is composed of two maxima and two minima. Two consecutive maxima or minima are 
not identical to each other when the oscillation amplitude is finite, because the motion 
is not symmetric with respect to the z = 1 position. Time integration is terminated 
when both the steady oscillatory motion has been achieved and the top rod has 
returned to its initial position. Given the problem parameters, this procedure is 
repeated under different forcing frequencies. Comparing the maximum values of A ,  for 
different forcing frequencies but the same fluid properties, bridge geometry and 
oscillation amplitude yields the resonance frequency. 

In calculating the damping rate, time integration is started from the steady 
oscillatory solution at resonance conditions but with the top rod fixed after it reaches 
its initial position, z = 1.  Thereafter, G(t) is set to zero in all boundary conditions and 
other equations where it appears. Four Euler backward steps with equal time-step size, 
Ar = lop2, are used to accommodate the step change in axial velocity at the upper 
rod/fluid interface from w = COS(T) to w = 0. Beyond this initial transient, a second- 
order Adams-Bashforth predictor-trapezoid rule corrector is invoked to complete the 
time integration. In this case, time integration is stopped when A ,  approaches zero for 
B = 0, or returns to its known static value for B =!= 0. This is verified in a manner similar 
to that in forced oscillations. 

l + G ( t )  
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Time/2n: 

FIGURE 3. As figure 2 but with Re = 20, r = 1.15. 

3.4. Modified-Newton method and accuracy of calculations 
The ordinary differential equations (3.10H3.12) include several nonlinear terms such 
as the convective term in the momentum equations and the deformation of physical 
domain introduced by (3.4H3.6). At every time step, this nonlinear system of 
equations is solved iteratively at the corrector step, with the initial guess provided by 
the predictor. Equation (3.16) is taken as the overall residual equation and 
Newton-Raphson iterations may be used for updating the unknown vector /3 at the 
(n + 1)th iteration, 

/3("+1) = p(") - (J(n)) - l@n).  (3.18) 

The Jacobian matrix J is computed in closed form by differentiating each term in 
residual equations (3.10)-(3.12) with respect to the unknown vector. 

The most time-consuming procedure in solving this nonlinear system is the inversion 
of the Jacobian matrix, J. This procedure is expedited considerably by updating the 
Jacobian matrix only when convergence becomes less than linear. This is the so-called 
modified-Newtonian method. Quite often in the present study, it was necessary to 
formulate and LU-decompose the Jacobian only once per time step. It was also found 
that almost quadratic convergence was still attained. The LU-factorization of the 
Jacobian is accomplished using the ARROW routine (Thomas & Brown 1987). This 
routine is most efficient if the matrix retains its original form, i.e. if pivoting is avoided. 
However, essential boundary conditions are imposed on z = 0 and z = 1 +G(t) for u 
and w, and pressure is calculated from the continuity residual. Therefore, straight- 
forward inversion of J would require pivoting. This drawback is circumvented by 
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FIGURE 4. Convergence of interface shape with varying number of axial and radial elements, for 

Re = 20, A = l/n, u = 1.15, and a = 0.2. 

rearranging both the Jacobian and the residual vector. To this end, the pressure 
equations of the nodes along z = 0 are exchanged with the axial velocity equations on 
the nodes along z = Az, so that they are the first to be assembled. 

The converged solution is given in terms of the velocity and pressure fields and the 
location of the interface. Convergence of the corrector step is measured in terms of the 
Euclidean norm of the difference between solution vectors in consecutive iterations. It 
is achieved when IIA/3ll < e,,, where e, is a prespecified tolerance set at in the present 
work. Typically, three to four modified-Newton iteration steps are needed to achieve 
the desired accuracy. 

The accuracy of the numerical simulation depends on the mesh structure, and the 
error arising from time integration. The accuracy due to the spatial discretization is 
tested by mesh refinement. Figure 4 shows convergence of the calculations in terms of 
A ,  when the top rod returns to z = 1 and during steady oscillations. This figure verifies 
that in calculations with Re d 20, a mesh with only 6 radial and 20 axial equally spaced 
elements is suffcient in order to achieve at least three accurate digits in calculating 
deformations in the free surface of the bridge. The same accuracy is achieved in 
calculating the velocity field. For 30 < Re d 50, 8 radial and 30 axial elements were 
required in order to capture the larger deformation of the gas/liquid interface. When 
internal layers appear and at Re > 30 the accuracy in the pressure field dropped to only 
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Number IBM IBM 
Mesh ofeqs. 3090-6005 3084 
8 x 2 0  1624 8000s 60000s 
8 x 3 0  2414 12000 s 100000 s 

TABLE 1. CPU time for calculating ten oscillation periods when Re = 30, B = 0,  tc = 0.2 and 
A = l/a with two different mesh sizes 

two digits. Unequally spaced elements did not improve the accuracy of the 
computations. The mesh employed in the present analysis is finer than the ones 
employed by Duranceau & Brown (1986,1988) and Harriott & Brown (1984) in similar 
problems. 

For Re > 50 even more axial elements were required in order to resolve the 
oscillating boundary layers at the solid/liquid interfaces (Borkar & Tsamopoulos 
199 1). Furthermore, the deformations of the capillary bridge increase considerably and 
occur faster as the Reynolds number increases. This forces the adaptive time-stepping 
routine to decrease the time step considerably (250-300 time steps were required for 
each period at Re = 50 as opposed to 120 steps at Re = 20). In addition, the lower fluid 
viscosity takes longer to damp out the initial transients and steady oscillations were 
achieved only after 20 periods of oscillation. All these effects made such calculations 
even more expensive. 

In the time integration procedure, the size of the time step is controlled and 
automatically adjusted by the procedure outlined earlier and so that the difference 
between the predictor and the corrector is smaller than The accuracy of time 
integration is monitored by comparing the instantaneous volume of the liquid bridge 
calculated by (2.14) with the initial volume of a perfect cylinder, 6 = nRzE. Typically, 
the variation of volume is less than 0.01 YO throughout the calculations. Computations 
were performed either on the IBM 3090-6005 supercomputer at Cornell University or 
on the IBM 3084 at the University of Buffalo. Table 1 shows the two discretizations 
used for most calculations, the corresponding number of unknowns and typical 
computation times. 

4. Results and discussion 
In the earlier analysis of viscous bridges, Tsamopoulos et al. (1 992) calculated 

frequencies and damping rates for infinitesimal disturbances. They solved the relevant 
generalized eigenvalue problem and reported eigenvalues for the first four eigenmodes. 
These results comprise an indispensable guide for the present calculations which are 
considerably more time consuming. Although linear analysis was performed for 2 < 
Re < 1000, it was found that useful information for physical properties could be 
extracted at Re < 100, where the dependence on Re was easier to detect. This, coupled 
with the fact that nonlinear calculations become quite expensive as Re increases, 
restricts the present nonlinear analysis to Re < 50. In addition, excitations of only the 
first mode are studied here since they are easier to reproduce experimentally and they 
are the ones that lead to bridge breakup. The nonlinear features of higher modes 
should be quite similar. In fact, according to the linear analysis, exciting the second 
mode may be a better way to determine viscosity and surface tension of materials with 
70 < Re < 200. 

Nonlinear resonance frequencies are calculated in $4.1 as a function of physical 
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FIGURE 5. Shift of resonant frequency due to increasing forcing amplitude: a = 0.1 (O), a = 0.2 (A), 
and a = 0.3 (a), with Re = 20, A = l/x. Vertical solid lines indicate the resonant frequencies. The 
vertical dashed line indicates the linear eigenfrequency calculated by Tsamopoulos et al. (1992). 

properties of the fluid, bridge geometry and amplitude of motion of the upper rod. In 
$4.2 damping rates are calculated as a function of the same parameters. The total force 
applied on the lower rod may be measured experimentally to provide additional useful 
information about the liquid in the bridge. This is explained in $4.3. Gravitational 
effects are discussed in $4.4. 

4.1. Nonlinear resonance frequency 
According to linear analysis the eigenfrequency should be independent of the 
amplitude of the disturbance. Nevertheless, we have observed experimentally (Mollot 
et al. 1993) that changes in the forcing amplitude modify the resonating frequency. This 
has been theoretically shown for oscillating drops with low enough viscosity by 
carrying out a weakly nonlinear analysis (Tsamopoulos & Brown 1983, 1984). 

In order to identify nonlinear resonance conditions of liquid bridges, dynamic 
simulations are carried out for a given disturbance amplitude and forcing frequency of 
the top rod. When initial transients dissipate and a steady oscillatory response in the 
fluid is established the maximum value of A,  (normalized by a) in a complete period 
is recorded. Subsequently, the forcing frequency is changed, keeping the same 
amplitude, and finally even the amplitude is changed. Each such repetition produces a 
single mark in figure 5 and similar figures thereafter. Three separate curves with very 
distinct maxima, i.e. frequencies at resonance, are shown in figure 5 for three different 
amplitudes. It may be readily observed that given a liquid with Re = 20 and a bridge 
geometry with A = l/n, increasing the disturbance amplitude reduces the frequency at 
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FIGURE 6. Shift of resonant frequency for different aspect ratios: A = 0.75/x (V, nonlinear or ..., 
linear analysis); A = l /x (0, nonlinear or ---, linear analysis); and A = 1.25/x (A, nonlinear or 
-.-.- , linear analysis), for Re = 20, a = 0.2. Vertical solid lines indicate the resonant frequencies. The 
other vertical lines indicate the corresponding linear eigenfrequencies. 

Linear Nonlinear Percentage 
a Re AK frequency frequency change 
Infinitesimal 20 1 1.289 - - 

- 0.1 20 1 1.2375 - 4.0 
0.2 20 1 - 1.15 - 10.8 
0.3 20 1 - 1.10 - 14.7 

Infinitesimal 20 0.75 0.6445 - - 

Infinitesimal 20 1.25 2.058 - - 

Infinitesimal 10 1 1.2733 

Infinitesimal 30 1 1.2938 

Infinitesimal 50 1 1.2976 

0.2 20 0.75 - 0.6125 - 5.0 

0.2 20 1.25 - 1.8125 -11.9 

0.2 10 1 1.25 - 1.8 

0.2 30 1 1.117 - 13.7 

- - 
- 

- - 
- 

- - 
- 0.2 50 1 1.07 - 17.5 

TABLE 2. Effect of forcing amplitude, a ;  fluid properties, Re; and bridge geometry, A, on 
frequency of the liquid bridge at resonance 
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FIGURE 7. Shift of resonant frequency for different Reynolds numbers: Re = 10 (V, nonlinear or ..., 
linear analysis); Re = 20 (0, nonlinear or ---, linear analysis); Re = 30 (A, nonlinear or -.-.-, 
linear analysis); and Re = 50 (0, nonlinear or -...-, linear analysis); with A = l/a and a = 0.2. 
Vertical solid lines indicate the resonant frequencies. The discontinuous vertical lines indicate the 
corresponding linear eigenfrequencies. 

resonance. The linear frequency is indicated by the vertical discontinuous line in figure 
5.  It is known that resonance frequencies of liquid drops with high enough Re decrease 
with the square of the disturbance amplitude (Tsamopoulos & Brown 1983). Here, 
however, where viscous effects are quite significant and the solid/liquid interfaces 
provide additional resistance to motion the dependence seems to be a little above linear 
for a < 0.2 and below linear for a > 0.2 (see table 2). Similar effects have been obtained 
by Basaran (1992) for an oscillating viscous drop. The decrease in resonance frequency 
with increasing a is due to the increases in fluid inertia that the latter causes (see (2.2)). 
Clearly, prior knowledge of linear frequencies and the expected variation of frequency 
at resonance assisted in these calculations. 

Similar decreases in frequency should be expected for different values of A and they 
are shown in figure 6. It may be readily observed from this figure and table 2 that longer 
bridges but with same radii yield smaller values of and smaller decreases in resonance 
frequencies. The former is a linear effect and it should have been expected since in 
longer bridges the free-surface area is increased and this allows for less restrained 
motion of the fluid. The latter is a nonlinear effect and it may appear somewhat 
unexpected since longer bridges should have larger inertia which should lead to larger 
decreases in resonance frequency. However, it should be noted that the forcing 
amplitude has been dimensionalized with the rod radius and not the bridge length. 
Therefore, in spite of keeping the same value of a in figure 6, the real disturbance 
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FIGURE 8. Velocity field of an oscillating liquid bridge at resonant frequency of first mode during a 
particular period (0 < t < 2n), and after initial transients have dissipated with Re = 30, A = l/n, a = 
0.2. and = 1.117. 
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introduced in the bridge decreases as its length increases or A decreases. If this is taken 
into account and the percentage in frequency decrease is linearly adjusted to reflect the 
same amplitude to length ratio, it turns out that the frequency decrease has 
approximately the same value for A = l/n: and A = 1.25/n. The adjusted value of 
frequency decrease is still somewhat lower for A = 0.75/n. This may be attributed to 
the fact that the frequency decrease does not vary linearly with amplitude. 

Next, the effect of Re was studied. Figure 7 shows the results of nonlinear 
calculations in comparison with linear frequencies. Predictions of linear theory 
exhibited a relatively small increase in frequency as Re increased and approached the 
asymptotic value calculated using boundary-layer analysis (Borkar & Tsamopoulos 
1991). For example, at A = 2/n = 0.637 the frequency increased from 3.81 at Re = 2.5, 
to 4.859 at Re = 10 and to 5.036 at Re = 50. This can also be observed from figure 7 
and table 2 where linear results at A = 1/n: are given. It should be noted that the 
present definition of A is a factor of n: smaller than the one in Borkar & Tsamopoulos 
(1991) and Tsamopoulos et al. (1992). 

In contrast to this, nonlinear calculations show that not only is the dependence of 
the resonant frequency on Re inverted, but also that their values are significantly 
differentiated from each other for different Reynolds numbers. The decrease in 
frequency with increased inertia (finite a) turns out to be much more significant than 
its increase due to decreased viscosity. In general, there are two competing effects. 
Viscosity retards fluid motion and thereby increases the oscillation period. This is a 
linear effect. At the same time, viscosity dissipates energy and decreases the oscillation 
amplitude leading to a decrease in oscillation period. This is a nonlinear effect. 
Moreover, resonance of different modes can be detected more easily at larger Re, since 
the maxima at resonance are sharper and further apart when dissipation is smaller. 
This additional differentiation for different fluids may be used to deduce both surface 
tension and viscosity from forced oscillation experiments only. In contrast to this, 
eigenfrequencies for different modes and for Re < 10 are quite close together and 
resonance of each one is more difficult to identify. 

The velocity field through a complete period of oscillation in a bridge with Re = 30, 
A = l/n and a = 0.2 is shown in figure 8. The forcing frequency has been set at the 
nonlinear resonance value, = 1.117, and a steady oscillatory motion has been 
achieved already. Only half of a bridge cross-section along the axis of symmetry is 
shown for better clarity. Although the characteristic scales are such that the 
dimensionless bridge radius and height are equal to 1 their dimensional ratio, l/x, has 
been preserved in these plots. A measure of the magnitude of velocity in the flow field 
and at time intervals of in: (approximately) is also indicated. The velocity vectors are 
shown at one half of the locations in which they are calculated for clarity, except for 
cases with stronger recirculation where they are shown at all the calculated points. The 
oscillatory motion of the upper solid/liquid interface is shown as well. 

At this moderate value of Re, the upward motion of the rod propagates first to the 
fluid nearest to it and causes a smaller motion in the fluid closer to the bottom 
stationary surface. Fluid near the upper (lower) solid surface also moves away from 
(towards) the centreline. The highest velocity occurs first closer to the top rod. Later 
at about t = in, when the velocity of the top rod is zero, the maximum velocity occurs 
at around the mid-plane of the bridge. This out-of-phase motion between the 
oscillating rod and the fluid in the middle of the bridge exists because the timescale for 
vorticity transport is different from the timescale of oscillation of the rod. This phase 
lag should be observable if, for example, the force on the lower rod were measured, see 
54.3. 
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FIGURE 9. (a) Velocity field of first mode calculated using inviscid analysis, A = 1.2/7c and u = 1.921, 
and magnification of the flow field at the bottom of a bridge with Re = 30, A = I/R, a = 0.2 and 
u = 1.117 at (b) t = 3.142 and (c) t = 5.619. 

Subsequently, the top plate reverses its motion and an unsteady internal layer is 
created owing to the collision of fluid close to the upper wall which starts moving 
downwards with fluid from the mid-plane which still moves upwards owing to its 
inertia. As time progresses this internal layer is located lower in the bridge. At t = R, 
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the same internal layer interacts with fluid close to the lower solid surface and creates 
recirculation throughout the lower third of the bridge which eventually dissipates. 
Unfortunately, this cannot be clearly seen in figure 8 ,  because the velocity field is much 
weaker there. However, it can be seen in figure 9 where it has been preferentially 
magnified. When the downward velocity of the upper rod passes its maximum value, 
t > 7c, fluid near the upper (lower) solid surface starts moving towards (away from) the 
centreline. At about t = :7c as well as at t = $, the interface shape of the bridge 
becomes almost cylindrical. At t = g7c M 4.712 the upper plate starts moving upwards. 
This creates internal layers near the both solid/liquid interfaces, shown here at t = 
5.079. In contrast to the earlier one, the upper internal layer is now created because 
nearby fluid elements tend to move in opposite directions. Complicated recirculation 
patterns may be seen throughout the lower third of the bridge at t = 5.619. Finally at 
t = 27c = 6.283 the flow field has completed its cycle and has reached its original 
configuration. 

At even lower values of Re, fluid recirculation damps out faster and is limited to the 
upper part of the bridge. Clearly, with very viscous fluids the motion would become 
rotational and creeping throughout. Given the results of linear analysis this should be 
expected at Re < 2. On the other hand, at higher values of Re viscous dissipation 
should be confined in the boundary layers near the two solid surfaces, as described in 
Borkar & Tsamopoulos (1991). 

The flow field presented above can be easily contrasted to that obtained from 
inviscid analysis or the one-dimensional Cosserat model. Figure 9 shows a 
magnification of the viscous flow field in the lower part of the bridge at two instances 
along with the inviscid flow field at any point in time. The latter is calculated by the 
zeroth-order (in l / R e )  solution given in Borkar & Tsamopoulos (1991) which is similar 
to the inviscid result in Sanz (1985). In order to obtain the inviscid solution at any other 
time instant, t, the numerical values in figure 9 must be multiplied by cos ( t ) .  The flow 
is now mostly confined to the free surface and the middle part of the bridge. Obviously, 
no recirculation, internal layers, or boundary layers can be predicted by the inviscid 
analysis. Moreover, there is inward (outward) velocity along the upper (lower) 
solid/liquid surface, since the no-slip condition is not satisfied. Only this effect is 
remedied by the boundary-layer analysis (Borkar & Tsamopoulos 199 I ) ,  which, 
nevertheless, cannot predict either internal layers or regions of recirculation. This is the 
reason why there is significant deviation for Re < 50 between predictions of the 
boundary layer and viscous theories. This deviation is even more apparent in the 
damping rates and for higher modes. 

4.2. Nonlinear damping rate 
In a similar manner it should be expected that nonlinearities will modify the damping 
rate from its linear values. Upon obtaining resonance conditions for a given set of Re, 
A,  and a, motion of the upper rod is stopped by setting its velocity to zero as soon as 
the rod reaches the location z = 1.  In spite of this, the liquid bridge is driven by inertia 
and continues its motion which for the range of Re examined is underdamped, owing 
to viscous dissipation in the liquid. Simulations are stopped when the overall amplitude 
of deformation is close to zero. Figure 10 shows the variation of A, /a  us. time in a 
typical free oscillation. Given the definition of A ,  two maxima and two minima 
comprise a complete period. 

In the linear analysis by Tsamopoulos et al. (1992), time was scaled by @R3/y)l since 
there was no other characteristic time in that system. Here however, it was more 
convenient to use the inverse of the forcing frequency as a characteristic time. 
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FIGURE 10. Evolution of the interface amplitude of a liquid bridge in free oscillation after 
resonance was achieved with Re = 20, A = ljn, u = 1.15 and a = 0.2. 

Therefore, the damping rate calculated by the linear analysis must be adjusted as 
follows : 

in order to relate it to the present results. In (4.1) C T ~  and C T ~  are the linear damping rate 
and linear eigenfrequency with respect to the scaling in the linear theory, respectively, 
and C T ~  is the linear damping rate according to the present definition of characteristic 
time. 

Each mark in figure 11 and figures thereafter represents Ad,  m a x / ~  at different points 
in time, where Ad,max is the maximum value of A,  in each half-cycle. The marks have 
been connected by a smooth curve. As noted earlier there are two maxima in each 
cycle. In damped oscillations the maxima correspond to inward (outward) motion of 
the upper (lower) part of the bridge and vice versa. If the linear damping is considered, 
then 

O$=d/@?, (4.1) 

relates the reduced overall amplitude of the first maximum at time t ,  to its value at 
subsequent points in time. Starting from the same first maximum the curve produced 
by (4.2) lies above the nonlinear data and therefore it predicts smaller damping than 
the nonlinear analysis. The nonlinear data exhibit a larger slope at the beginning of 
free oscillations and a smaller slope later on. Therefore, they do not follow a single 
exponential curve and the damping rate has become amplitude or time dependent. 

Experimentally, it is easier to identify the first few maxima in amplitude since they are 
larger. Therefore, the first two maxima from the nonlinear analysis will be used in (4.2) 
and the resulting value of C T ~ ~  will be called the nonlinear damping rate. A similar 
procedure is used in measuring experimentally a,NL, see Mollot et al. (1993). 
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FIGURE 1 1. Comparison of nonlinear damping (+), linear damping (---) using g k  = 0.076 57 and 
damping by fitting an exponential through the first two nonlinear points (-.-.-) using cr2 = 
0.09828, for Re = 20, A = 1/n, a = 0.2 and cr = 1.15. 

a Re 
Infinitesimal 20 

0.1 20 
0.2 20 
0.3 20 

Infinitesimal 20 
0.2 20 

Infinitesimal 20 
0.2 20 

Infinitesimal 10 
0.2 10 

lnfinitesimal 30 
0.2 30 

Infinitesimal 50 
0.2 50 

A7C 
1 
1 
1 
1 
0.75 
0.75 
1.25 
1.25 
1 
1 
1 
1 
1 
1 

Linear 
damping 

rate 
0.0766 
- 
- 
- 

0.0830 

0.0786 

0.147 

0.0526 

0.0329 

- 

- 

- 

- 

- 

Linearized 
nonlinear 
damping 

rate 

0.0860 
0.0983 
0.1066 

0.0976 

0.121 

0.161 

0.0682 

0.0522 

- 

- 

- 

- 

- 

- 

Percentage 
change 

12.3 
28.3 
39.2 

17.6 

53.9 

9.5 

29.7 

58.7 

- 

- 

- 

- 

- 

- 

TABLE 3. Effect of forcing amplitude, a ;  fluid properties, Re; and bridge geometry, A on damping 
rate of liquid bridge 
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FIGURE 12. Comparison of nonlinear damping (+), linear damping (---) with (a) C T ~  = 0.147, (b) 
& = 0.05264, and damping by fitting an exponential through the first two nonlinear points (-.-.-) 
with (a) fl = 0.161, (b) = 0.0682, for (a) Re = 10, A = I/x, a = 0.2, u = 1.25 and (b) Re = 30, 
A = l/x, CL = 0.2, c = 1.117. 

Using this value of g g L  a new exponential curve may be generated which lies slightly 
below the nonlinear data at later times. Figure 11 shows that the nonlinear data are 
bracketed from above by the exponential curve created by the linear theory and from 
below by the exponential curve created from the first two maxima. At the beginning 
of free oscillations, deformation and velocity are large enough, so that viscous 
dissipation is larger. Later on, they become very small and the nonlinear data approach 
asymptotically the prediction of linear theory. Similar behaviour was found with a = 
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FIGURE 13. For caption see facing page. 
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FIGURE 13. Velocity field of a liquid bridge in free oscillation after resonance was achieved with 
Re = 30, A = l/n, a = 0.2, and r = 1.117. 
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FIGURE 14. Evolution of capillary force, velocity of top rod, and position of top rod in one period 
offorced oscillation. For the capillary force, --, ---, and ......, indicate cr = 1.025, 1.150 (resonance 
frequency), and 1.325, respectively. 

0.8 I 

0.1, and a = 0.3. Comparing the calculated values shown in table 3 indicates that the 
nonlinear damping rate increases with the amplitude of the initial disturbance. This 
should be expected, since motion with a larger amplitude should induce stronger 
recirculation and even internal layers which dissipate it faster. From the same table it 
may be observed that as a bridge of given radius becomes shorter (larger A )  the 
nonlinear damping rate deviates further from the linear one. Since in all cases free 
oscillations start from resonance conditions, larger values of A correspond to larger 
values of nonlinear frequency (see figure 6), which are a measure of the velocity field (z). This stronger velocity field in a more confined region would dissipate faster. 
Additional plots of the amplitude evolution in free oscillations are given in Chen 
(1 99 1). 

Figures 11 and 12 along with table 3 show the effect of Re on the damping rate. At 
Re = 10 the motion is nearly dominated by viscous effects and inertia plays a small 
role. Fewer and shorter maxima in A,/a are found. This would require increased 
attention in experimentally measuring damping rates. Moreover, the nonlinear 
damping rate follows quite closely the linear one. On the other hand, at Re 2 30 
motion dissipates much slower so that enough oscillation periods are observed. 
Therefore, it is now easier to measure damping rates although they deviate significantly 
from their linear values. Thus, the dynamics of liquid bridges in free oscillation are 
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parallel to either surface levelling of a very viscous liquid (overdamped) or to capillary 
waves of an inviscid liquid (underdamped). 

Figure 13 shows the velocity field during free oscillations at intervals of 
approximately in:. The conditions are the same as those in figure 8. Substantial motion 
of the liquid may be observed and is caused by its inertia. Eventually, the kinetic energy 
is attenuated by viscosity and in the absence of gravity the bridge returns to its original 
shape, the cylindrical one. Internal layers and recirculation may be seen at the centre 
of the bridge or close to the solid/liquid interfaces at t = 2.585 and 5.289, respectively. 
Both will expedite energy attenuation. For easier observation these cases are shown 
at twice the resolution of the rest. 

- - 
- - 
- - 

4.3. Force on the lower solid surface 
As an alternative means of monitoring the bridge motion, one may measure the total 
force acting on the lower rod. Its variation with time in comparison with the location 
of the upper rod may provide useful information on the liquid in the bridge. The 
feasibility of this approach and a comparison of experimental measurements to a first- 
order theory is given in Ennis et al. (1990). Their simplified theory combines the 
lubrication approximation with static capillary forces. Their primary interest is in 
estimating the force caused by a very short liquid bridge which connects two spherical 
particles. In general, the total force acting on the lower rod varies during a period of 

2.0 I I I I I I I I I 

- 
- 
- 
- 
- 
- 

I I I I I I I I I 
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FIGURB 16. For caption see facing page. 
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FIGURE 16. Velocity field and interface shape of a liquid bridge oscillating at resonance in the 
gravitational field, with Re = 20, A = l / ~ ,  a = 0.2, u = 0.925, and B = 0 . 2 ~ .  

oscillation and it is composed of a surface tension contribution, 2n&sin(8,), and a 
pressure contribution, 

2n (4 - PO)I,=, FdF. 

The former opposes separation of the rods since 0 < 8, < 180" always; whereas the 
latter opposes their separation if < Po. Here pi and Po are the pressures inside and 
outside the gas/liquid interface, respectively, and 8, is the contact angle at the edge of 
the lower rod measured through the liquid phase. 8, is defined as 

where the unit outward normal vector on the free surface, N, is evaluated at z = 0. 
Since the supporting surface is flat, the viscous normal stress can be shown to be 
identically zero by combining (2.1) and (2.5~1). Thus, the total force on the bottom rod 
is given by 

0 

8, = cos-'(e,*N), (4.3) 

PR 

P = 27cRy sin (8,) - 271: (P ,  - Po)(t_o Fdr 
J O  

(4.4) 

The force may be scaled by 2nRy and thus (4.4) becomes 

F = sin (6,) - (Pi - P,)I,=, r dr. (4.5) 1: 
According to (4.5) the lower rod experiences an upward (downward) force, if F is 
positive (negative). 

Figure 14 shows the total force acting on the lower rod, along with the oscillating 
velocity and position of the upper rod in a typical forced-oscillation cycle. The total 
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FIGURE 17. Shift of frequency at resonance of a liquid bridge with B = 0.27~ (A, nonlinear or ..., 
linear analysis) and B = 0 (0, nonlinear or ---, linear analysis), for Re = 20, A = l/n, and a = 0.2. 
The vertical solid lines indicate nonlinear resonance frequencies. The dashed lines represent linear 
eigenfrequencies of each case. 

capillary force in a static and cylindrical liquid bridge may be readily calculated, since 
then, 8, = 90" and P,-P, = 1 and therefore F = 0.5. The departure of F from this 
value is brought about by the fluid motion which alters both 8, and P, during 
oscillation; see figure 8. The maximum value of I; in a period occurs after the point of 
maximum separation between the rods and when the interface shape is concave in the 
region z = 0. Then, both the surface curvature and viscous contribution to pi - Po are 
very small; see figure 8 at t = 2.588, 3.142 and 3.610. In addition, this maximum value 
of F arises at later times when the forcing frequency increases. This is a direct result of 
the increased inertia of the system, see (2.2), and has been found experimentally by 
Ennis et al. (1990), as well. 

4.4. Gravitational eflects 
In a typical experimental study on Earth the gravitational Bond number, B, is 
different from zero. For example, in the experiments carried out by Mollot et al. (1993) 
B usually varied between 0.3 and 0.6. Therefore, the effect of gravity on the nonlinear 
bridge dynamics must be examined. 

Figure 15 shows that a viscous liquid bridge achieves a steady oscillatory motion 
fairly fast. In this and all other calculations with B =I= 0 the initial shape is that of static 
bridge at the same Bond number and with liquid volume the same as the volume of the 
space between the cylindrical rods. Although two maxima in amplitude still exist in 
every oscillation cycle, they are seen in figure 15 to be very different in magnitude. The 
larger one occurs when the top rod starts pushing downwards from its point of 
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FIGURE 18. Shift of resonance frequency of a liquid bridge with B = 0.2% Re = 20 and A = l /x.  
Dashed line (---) indicates the linear eigenfrequency and solid lines represent resonant frequencies 
for a = 0.1 (0) and a = 0.2 (A). 

Linear Nonlinear Percentage change 

a B frequency damping frequency damping frequency damping 
Infinitesimal 0.628 1.273 0.0745 - - - - 

0.1 0.628 - - 1.025 0.0842 - 19.5 13.0 
0.2 0.628 - - 0.925 0.1031l -27.3 38.4 

- - - - 0.09422 - 26.4 - 

Forced oscillations are stopped at z = 1 while the top rod is moving upwards. 
Forced oscillations are stopped at z = 1 while the top rod is moving downwards. 

TABLE 4. Effect of forcing amplitude a and Bond number, B, on resonant frequency and damping 
rate of a liquid bridge at Re = 20 and A = l /x  

maximum separation from the lower rod; whereas the smaller one occurs when the top 
rod starts pulling upwards from the point of minimum separation. In comparison with 
the case of B = 0 (figure 2), this more (less) deformed interface in the two different 
stages of motion results from the fact that the acceleration induced by the rod 
oscillation and gravity are additive (subtractive). Interface shapes and velocity fields 
for B = in = 0.628, Re = 20, A = 1/n and a = 0.2 at resonance are shown in figure 16. 
Areas of recirculation and internal layers may be readily seen, for example at t = 2.308, 
3.142, 3.802, 5.401. Although the bridge geometry and oscillation amplitude are the 
same as in figure 8 and Re somewhat smaller, recirculation seems to appear more often 



404 T.-Y. Chen and J .  Tsamopoulos 

- 

- 

Ad - 
a 0  1 2 3 4 5 

I I I I I I I I 1 

0 t 2 4 6 8 

TimeI2n 
3 

FIGURE 20. Comparison of nonlinear damping (+), linear damping (---) using uE, = 0.0745; and 
damping by fitting an exponential through the first two nonlinear points (-. - .-) using u r  = 0.103 1 ,  
with Re = 20, B = 0.2n, A = l/n, a = 0.2, and u = 0.925. 

and it is stronger. This is because gravity increased bridge deformations which in turn 
facilitate fluid recirculation. 

According to linear theory, the eigenfrequency of a capillary bridge decreases as the 
Bond number increases. This is because the unperturbed static shape with B =k 0 
resembles more the first oscillation mode than the static shape with B = 0 (cylindrical), 
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FIGURE 21. Amplitude evolution of a liquid bridge in free oscillation when the top rods stops after 
half a period of oscillation with Re = 20, B = 0.2x, A = 1/x, a = 0.2, and u = 0.925. 

Thus, the former is easier to excite. When gravity and nonlinearity are considered 
simultaneously, resonant frequencies decrease even more. Figure 17 shows that the 
small difference in linear frequencies between a case with B = 0 and one with B + 0 is 
considerably increased when nonlinear effects are accounted for, see also table 4. In 
analogy with the B = 0 case, larger amplitudes cause larger decreases in resonant 
frequencies, see figure 18. 

Damping rates are calculated as in the case with B = 0. The upper rod is stopped at 
z = 1 and after resonance conditions were reached. The variation of A, /a  is recorded 
till the bridge returns to its static configuration. The static value of A,/a for B + 0 is 
larger than zero. This static value will be indicated by ( A , / Z ) ~ ~ .  Therefore, the 
amplitude predicted from linear theory should vary according to the following 
equation : 

The rest of the terms were defined earlier. Damped oscillations for 01 = 0.2 are shown 
in figure 19. The upper rod is stopped at z = 1 during its upward motion, i.e. when it 
has just completed a full cycle, t = 2x. The final value of A, /a  is 0.25, which is its static 
value. The larger maxima in each cycle from figure ,19 are shown in figure 20, which 
also shows the amplitude variation according to linear theory and by fitting an 
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FIGURE 22. Comparison of nonlinear damping (+), linear damping (---) using uk = 0.0745 and 
damping by fitting an exponential through the first two nonlinear points (-.-.-) using ugL = 0.0942 
with Re = 20, B = 0.2x, A = 1/x, a = 0.2, and u = 0.925. 

exponential curve through the first two points. Similar calculations, but with a = 0.1 
are reported in Chen (1991). Again, larger-amplitude motions damp out faster and as 
time increases they approach the linear result. 

Since with B + 0 there are two maxima with very different magnitudes in each cycle 
(see figure 15) damping rates may be affected by the time at which forced oscillations 
are stopped. Indeed, when the top rod is stopped at z = 1, but during its downward 
motion ( t  = n) a slightly different result is obtained. Figures 21 and 22 show the 
resulting amplitude variation with time and its maximum values for conditions 
identical to figures 19 and 20, respectively. It may be seen that vgL has decreased 
somewhat. This may be explained by observing that now the first maximum in the free 
oscillations arises later in time and is smaller. As a result, the flow has already slightly 
dissipated and the damping rate deviates less from the predictions of linear theory. 

5. Concluding remarks 
The nonlinear dynamics of capillary bridges have been examined. It was found that 

finite-amplitude forced oscillations have lower resonant frequencies than those 
predicted by linear theory. The decrease in frequency depends almost linearly on the 
amplitude for the range of Re examined. Also, finite-amplitude free oscillations exhibit 
larger damping rates which are time dependent and as the amplitude gets smaller they 
approach the corresponding linear values. Furthermore, the frequency decrease and 
damping rate increase become more prominent for larger Re or shorter bridges. 
Gravity may affect significantly the resonant frequency and damping rate, depending 
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Surface 
Temperature tension Density Viscosity Modified 

Material (“C) (dynes/cm) (g/cm3) (CP> Re Reference 
Bi-garnet doped 850 177 7.8 25 47 Luther (1986) 

LiCaAlF, 820 167.3 2.501 18.4 35 Fratello & Brandle 

Y,Al,O, 2 2000 78 1 3.684 43.5 39 Fratello & Brandle 

B P ,  1100 88 1.514 5800 0.06 Mackenzie (1956); 

by wo3 
(1991) 

(1 993) 

Kingery (1959) 
TABLE 5. Properties of materials with modified Re < 100 

on the size of the liquid bridge and the density of the liquid, i.e. the gravitational Bond 
number. 

It is well-known that static shapes of capillary bridges or pendant drops can provide 
a very accurate estimation of surface tension (Padday 1971). As noted in Tsamopoulos 
et al. (1992) and further elaborated here the resonance frequency and damping rate of 
an oscillating bridge can provide an accurate measurement of surface tension and 
viscosity of the liquid in the bridge, if the modified Re < 100. Several molten materials 
of current interest such as refractories, laser hosts, etc., fulfil this requirement. A small 
sample is given in table 5.  Generally, alkali borates and silicates of different 
compositions and at different temperatures cover the whole range of 0 < Re < 100. 

Since the damping rate is time-dependent, it seems more appropriate to measure 
surface tension by a static method and viscosity by measuring the resonance frequency 
of the bridge. According to the static method one needs to compare the observed static 
bridge shapes to calculated ones for various B. Subsequently, the resonance frequency 
of the bridge or its damping rate can be measured experimentally as described in 
Mollot et al. (1993). These values can be compared to the linear results given in 
Tsamopoulos et al. (1992) (e.g. their figure 4) for a preliminary calculation of Re and 
estimation of the viscosity. Then tables such as table 2 or 3 given here can be employed 
so that nonlinear effects will be accounted for. The accuracy to which viscosity can be 
deduced depends on the accuracy to which the resonance frequency can be measured. 
For example, using data from table 2 with Re - 20, a = 0.2 and A = 1/n we find that 
measuring the resonance frequency with an accuracy of 2-3 Hz, will result in viscosity 
predictions with an accuracy of 1 cP. For further details see Mollot et al. (1993). As 
noted earlier, the present method is even more sensitive if higher modes are excited, if 
larger-amplitude motions are achieved, or if the damping rates can be measured as 
accurately as the resonance frequencies. 
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